

Assessing Reading Skills *in Young Children:* The TBALL Project

(Technology Based Assessment of Language and Literacy)*

Elaine Andersen

USC

Patti Price

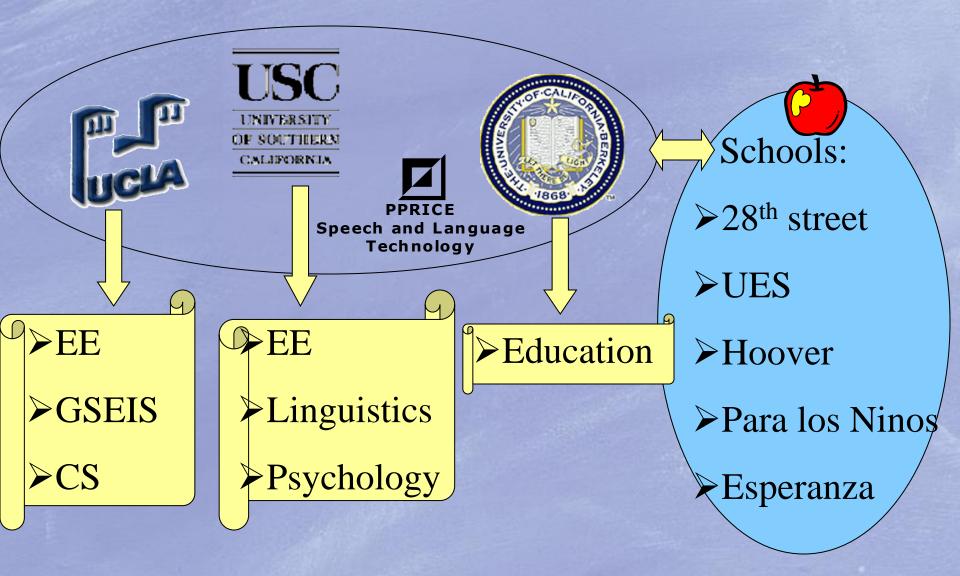
PPRICE Speech and Language Technology

CRESST Conference, UCLA

Sept 9th, 2004

*Funding by NSF is gratefully acknowledged.

TBALL Overview


- <u>TBALL people and goal</u>
 <u>Challenges (with</u>
 - <u>examples</u>
- Approach and progres

Plans

L

TBALL Team

TBALL Team

• UCLA: Alwan (PI), Baker (co-PI), Bailey, Boscardin, Heritage, Muntz, Zaniolo

- Berkeley: Pearson
- USC: Andersen, Narayanan (co-PI)
- Consultant: Patti Price
- Students: from all three sites
- Teachers: RETs
- Advisory Board: Neumeyer, Picheny, Rueda, Seda

TBALL Specific Aims

Develop assessment system and tools

- Helpful for teachers
- Test mono and multi-lingual students consistently
- Automatically score, analyze K-2 children

Investigate emerging literacy measures that are reliable indicators of later academic performance

Why Technology-Based Assessment?

- Teacher time constraints
- Teacher knowledge constraints
- Attractive activity for children
- Assessment tailored to individual students needs
- Valid, reliable information about students' progress and needs

Components of Assessment

Present selected test materials

Measure/score collected responses

Analyze and adapt to responses

Monitor progress, compare, experiment

Displays to to help teachers make decisions

Resources for teacher development

Sample Challenges

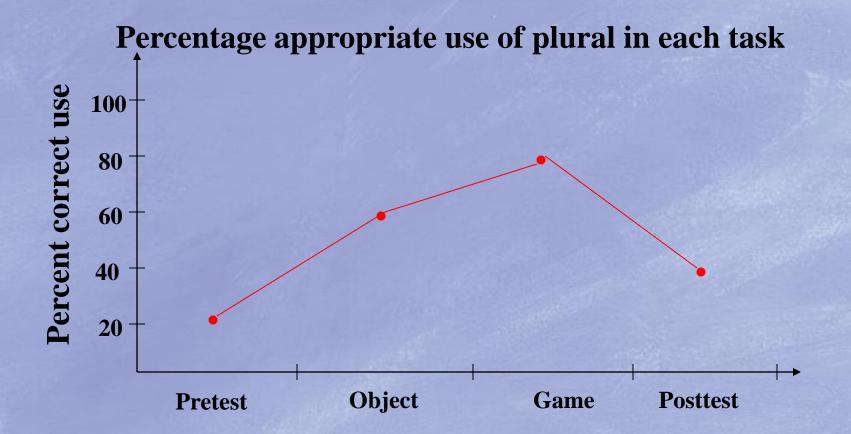
- * What materials to present and how?
- * How to adapt speech recognition to children's speech?
- * How to diagnosis discrepancies arising from
 - Pronunciation differences
 - Language exposure differences
- * How to detect distinct learner profiles?
 (Displaying data for different groups and needs)

What Material to Present?

Many different aspects of reading skills **Phonemic Awareness** Letter-sound knowledge, Blending, Spelling Word Recognition, Rate and Accuracy Morphology, Syntax, Comprehension How to diagnostically assess all aspects within the focus span of a young child?

.. And how to present it??

Children's demonstration of language & cognitive skills is highly variable across contexts


Researchers need to be sensitive to ecological validity of procedures

How will our collection technique affect the data?

Will it disadvantage some children in the measures?

Example of Presentation Differences: Hecht's Results

Speech Recognition Challenges

Shorter vocal tract lengths, higher pitch

Significant intra- and inter-speaker variability 🍕 🍕

Significant variability

Different linguistic backgrounds

- Misarticulations
- Signal to noise ratio

Reading Error or Pronunciation Difference?

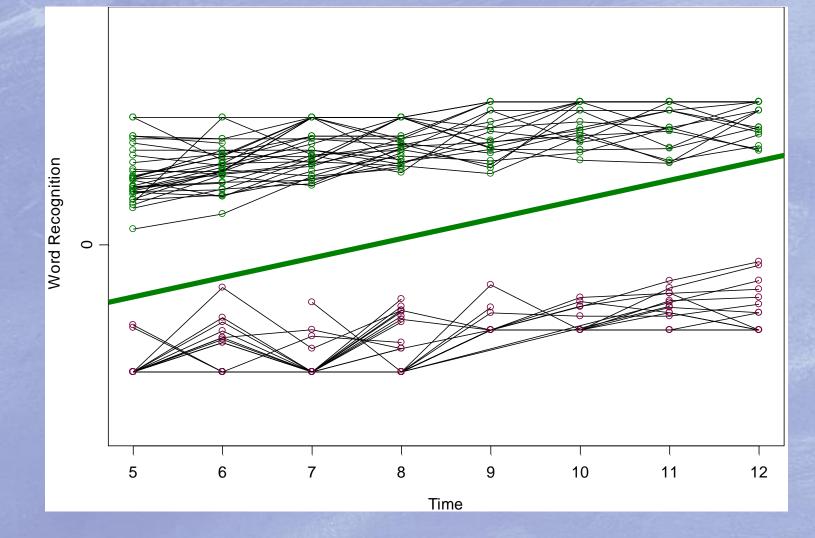
How do we know that reading is correct? /k aw/

- A misreading of 'car' (saw first letter and guessed)
- Or, a misarticulation/idiolect (can't say 'r')
- Or, possibly a dialect/accent issue (/jh eh s/ for 'yes')

We don't know what the word is unless we know something about the system

What marks "Hispanic accent" in English?

	In Spanish, compared to English
Phonetics	ptk closer to Eng bdg than to ptk
	s z n t d: tongue on teeth, not behind them
	Sounds missing: th, oy, etc.
Phonology	s+ptkbdg only across syllables
	Distinctions like 'bit-beat' not made
Literacy	Words spelled 'y' pronounced 'j', (by some)
	Words spelled 'i' pronounced 'ee', etc.
Exposure	May be more likely to hear much BEV



What is an English learner?

age	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8
Print						Lan	iguag	e 1
						Language 2		e 2
Phonetics								
Phonology								
Vocab/								
Grammar								
LTS/STL			and the					
Profitefi de on fight ter i jilis tig tugen er								

Learner Profiles

Individual data is 'messy', but the 'average' line hides the two distinct groups of learners.

The Biggest Challenge

- **Multidisciplinary collaboration**
- To solve these challenges requires
- Engineering
- Psychology, linguistics, psycholinguistics
- Experts in reading, assessment, datamining Starting from such different points of view
- Difficult to integrate into one coherent view
- Also the biggest opportunity
- And probably essential

Samples For You To Rate!

Target	Rating, Explanation
put	Wrong, confuses letter b and letter p
	Wrong, not paying attention
	Right, Hispanic accent
watch	Wrong, doesn't know -tch
	Right, Hispanic accent
cold	Wrong, confuses short and long vowels
	Right, just child's way of pronouncing word
full	Wrong, confuses short and long vowels
	Right, just child's way of pronouncing word

Components

* Present auditory, text, graphical stimuli

Decoding silent e

Ð

() = 2

* Present auditory, text, graphical stimuli

* Measure decoding, comprehension skills

Decoding silent e

Ð

Components

()

4 ...

* Present auditory, text, graphical stimuli

* Measure decoding, comprehension skills

* Score, analyze, and adapt to responses

(Query-based datamining: monitor progress, compare, experiment)

Which improved most?

Which data set performs best?

Who is teacher C?

Components

* Present auditory, text, graphical stimuli

E

* Measure decoding, comprehension skills

* Score, analyze, and adapt to responses

(Query-based datamining: monitor progress, compare, experiment)

(Displays for teachers to combine data to help make decisions)

(Resources for teacher development)

Development Process

- Task specifications
- Write items
- Teacher review
- Try with students (Instructional utility)
- Design interface
- Try interface
- Teacher review
- Displaying results

Sampling Domain					
Core that all do, sampling of rest					
Focus on high frequency items					
Oral Language	Name letters				
	Say Sound of letters				
Decoding	Hear sound, point to letter				
	Rhyming, blending				
Fluency	Reading words, timed and not				
	Naming images, timed and not				
Comprehension	Reading sentences, and pointing to image matching word				

Fall Battery (K example)

Letter Names	b, k, y, s, j, z + 6 random		
Reading (LTS)	d, a, i, s, j + 5 random		
Spelling (STL)	p ih v iy z + 5 random		
Blending	z+oo, t+ub, s+ix, ch+ick, thr+eethr+ee+ 5 random		
Reading Words	5 fixed, 5-35 random, hi freq words sorted by decodability		
Naming Pictures	As above, but with images		
Rapid Naming	Words and images, timed		

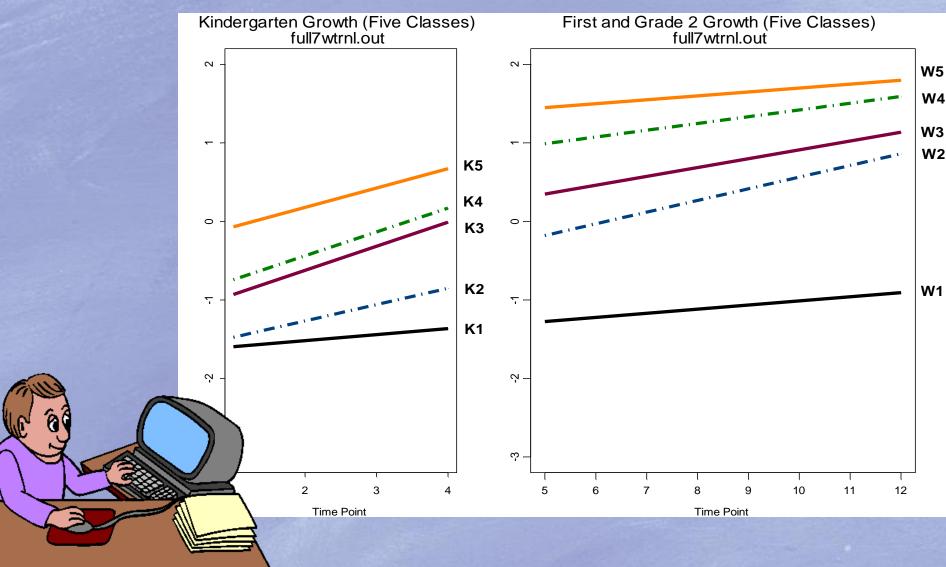
Speech Recognition Approach

Speaker adaptation techniques Pronunciation modeling Noise robust (front end and/or back end) Source and vocal tract parameter estimation

Sorting Data

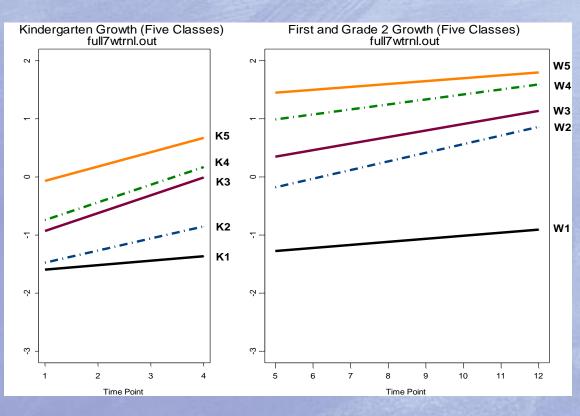
Database design allocates a place to 'put' the collected data and its context, e.g.,

- Demographic info from parent, date, time, type of test
- Data from test


Later the data can used for computations, e.g.,

Decoding silent e

- Words in isolation correct: 21/51 = 41%
- Words in connected text: 20/36 = 55%
- 75% of native speakers do better in connected text..
- Level of accentedness: 70%



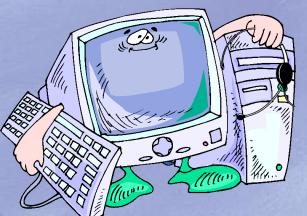
Example of Data Modeling

Growth Mixture Modeling can reveal unobserved heterogeneity in the model

Different developmental trajectories are accurately estimated

Students who are most at-risk for reading problems can be identified

Content selection plans Data collection plans Database plans Datamining/longitudinal plans Feedback plans Longer term plans



Content Selection Plans

Refine assessment tasks, materials, and automated techniques based on feedback

Address validity, utility, and impact for native and non-native speakers

Pilot studies on comprehension and reading in context tasks

Data Collection Plans

- **Train teachers to use the system**
- **Deploy in more classrooms each year**
- **Further evaluate and refine the ASR system**
- Try assessment with children (native speakers as well as various ELL levels)
- Get information on teachers' interpretations and evaluation of instructional use

TBALL Specific Aims

Develop assessment system and tools

- Helpful for teachers
- Test students consistently
- Automatically score, analyze K-2 children

Investigate emerging literacy measures that are reliable indicators of later academic performance